skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McDuff, Dusa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ellipsoidal capacity function of a symplectic four manifoldXmeasures how much the form onXmust be dilated in order for it to admit an embedded ellipsoid of eccentricityz. In most cases there are just finitely many obstructions to such an embedding besides the volume. If there are infinitely many obstructions,Xis said to have a staircase. This paper gives an almost complete description of the staircases in the ellipsoidal capacity functions of the family of symplectic Hirzebruch surfacesH_{b}formed by blowing up the projective plane with weightb. We describe an interweaving, recursively defined, family of obstructions to symplectic embeddings of ellipsoids that show there is an open dense set of shape parametersbthat are blocked, i.e. have no staircase, and an uncountable number of other values ofbthat do admit staircases. The remainingb-values form a countable sequence of special rational numbers that are closely related to the symmetries discussed in Magill–McDuff (arXiv:2106.09143). We show that none of them admit ascending staircases. Conjecturally, none admit descending staircases. Finally, we show that, as long asbis not one of these special rational values, any staircase inH_{b}has irrational accumulation point. A crucial ingredient of our proofs is the new, more indirect approach to using almost toric fibrations in the analysis of staircases by Magill (arXiv:2204.12460). In particular, the structure of the relevant mutations of the set of almost toric fibrations onH_{b}is echoed in the structure of the set of blockedb-intervals. 
    more » « less